AA-5 to Crystal Set

Al Klase - N3FRQ
2 October 2022

The Mission

- Build a good crystal set with parts salvaged from an All-AmericanFive radio.
- There's lots of these around, and the distressed ones are often free for the taking.
- We'll reuse the two-section variable capacitor and ferrite antenna rod for our tuned circuit.
- We'll repurpose the output transformer to enable the use of some dollar-store earbuds. (These are often quite sensitive due to their rare-earth magnets but require impedance matching for use in a crystal set.)

You can do this!

Our Victim

Our Victim

Schematic Diagram

The "Benny" Resistor

- Pointed out by the late Ben Tongue, captain-of-industry, electrical engineer and crystal-set maven.
- The DC resistance of a matching transform primary is much smaller that the AC impedance.
- The heavy DC load on the diode detector causes distortion and loss, espcilally on strong signals.
- Bypassed resistor in series with the primary solves the problem.

Ben Tongue on Crystal sets

Ben (left) supervising PGXS check out at our 2006 clinic.

Pictorial

Added Secondary

Detail

This wire comes from The left-hand end of the antenna rod.

Ground Terminal

Antenna Terminal

Capacitor Frame Not Grounded
This wire comes from The right-hand end of the antenna rod.

40-turn scramblewound secondary Polarity not important ose \#30 magnet wire in this case.

An Alternative Circuit

In the case where you can easily add a center-tap to the existing antenna coil this similar circuit can be utilized.

Output Transformer

- 0.1 VAC I KHz on secondary -> 1.7 VAC on primary
- Therefore: turns ratio $=1.7 \div 0.1=17$
- Impedance transformation = 17 squared $=289$
- This is consistent with assuming the transformer provided a 2500 ohm load to the 50C5 plate (see tube manual) and transformed it to 8 -ohms for the speaker.
- So: 67 -ohm earbuds look like $289 \times 67=19,363$ ohms

Log

AA-5 Crystal Set - Jersey City, NJ - Low 100-foot antenna.

FREQ	CALL	PWR	DX -Miles	Sterngth
1280	WADO	$50 \mathrm{k} / 7.2$	7	Weak
1190	WLIB	$10 \mathrm{~K} / 30 \mathrm{~K}$	4.9	Weak
1130	WBBR	$50 \mathrm{k} / 7.2$	6.1	OK
1010	WINS	50 K	5.2	OK
820	WNYC	$10 \mathrm{~K} / 1 \mathrm{~K}$	2.5	Very Strong
770	WABC	50 K	13	OK
710	WOR	50 K	4.9	OK
620	WSNR	$2 K / 7.6 K$	5.2	OK
570	WMCA	$5 K$	2.5	OK

